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Abstract: A great deal of effort has been applied to maximizing switchgrass (Panicum virgatum L.)
production for bioenergy by leveraging existing local adaptation to climate and via nutrient
management in this perennial grass crop. However, the biotic component of soils can also affect
plant production and long-term suitability at a given site. Here, we tested how productivity of four
switchgrass cultivars were affected by four microbial sources from the Great Plains. All inoculum soil
sources were previously conditioned by a mixture of switchgrass cultivars, allowing us to explicitly
address plant-soil feedback effects. Microbial soil inocula were added to a consistent background soil
to avoid physicochemical variation across the sources. We found that the soil microbial inoculum
source mattered more than cultivar in determining switchgrass biomass. The addition of microbes
resulted in smaller plants, with the largest plants found on control soils with no inoculum, but some
inocula were less negative than others. There was no geographic matching between cultivars
and soil microbial inoculum, suggesting little local adaptation to the biotic component of soils.
In addition, measurements of fungal root colonization suggest that fungi are not responsible for the
observed patterns. Based on these results, we suggest that switchgrass cultivation could benefit from
considering effects of the soil biota. Additional work is needed to generalize these patterns over time,
to a wider geographic area, and to a broader range of cultivars.
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1. Introduction

Productivity of plants, including of perennial grasses such as switchgrass (Panicum virgatum L.),
is known to vary regionally [1–6]. Switchgrass is one of the primary plant species of interest for
bioenergy production in the USA. It has repeatedly shown promise as a highly productive perennial
grass adapted to marginal and prime agricultural soils. Switchgrass has high variation in ecotypes,
growing as far south as northern Mexico and as far north as southern Canada.

Farmers and ranchers have long known that abiotic soil differences are a primary determinants of
perennial grass productivity (e.g., [4,7]). However, effects of the biotic component of soil remain poorly
understood. Most grasses in natural ecosystems are negatively affected by plant-soil feedback [8,9],
in which soil microbial communities cultivated by plants can then subsequently alter plant productivity
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and fitness. Far less is known about plant-soil feedback in agricultural ecosystems beyond pathogen and
herbivore accumulation [10], despite its potential to help optimize planting and rotation practices [11].

Studies of plant-soil feedback have primarily considered variation among species, although
intraspecific feedback is likely to be important for the maintenance of genetic diversity and its effects on
community and ecosystem processes [12]. Recently, intraspecific variation was observed in switchgrass
plant-soil feedback from soils with different rainfall histories [13]. Intraspecific variation in plant-soil
feedback may be more likely for perennial crops with genotypes that exhibit large differences in traits,
such as productivity, rooting depth, pathogen susceptibility, and mycorrhizal dependency [14,15].
Extensive morphological variation among switchgrass cultivars supports the potential for intraspecific
variation in plant-soil feedback, which may affect the choice of the kind of cultivars that are planted in
what regions in the future.

Regional variation in plant-soil feedback may also be caused by local adaptation [16]. Plant species
generally experience more negative feedback in their local, “home” soils compared to novel, “away”
soils [17]. This expectation is largely due to the buildup of detrimental pathogen interactions in home
soils where conspecifics have been grown and escape from those pathogens in away soils [18–20].
However, it is also possible that local or regional adaptation to beneficial microorganisms could lead
to more positive feedback in home versus away soils. For example, ecotypes of the perennial grass,
Andropogon gerardii, benefitted most from local mycorrhizal fungi that were able to alleviate nutrient
limitations in their home soils [21]. Therefore, we posit that soil from various regions could be, via plant
effects on development of the microbial community, important contributors to regional adaptation and
production of various switchgrass ecotypes.

Therefore, our objective was to investigate how growth of different switchgrass cultivars originating
in the Great Plains was affected by feedback from soils collected from switchgrass stands across the
same region. We used four cultivars representing lowland and upland ecotypes that are known to
exhibit regional variation in productivity and related traits [1–6]. To separate soil effects from microbial
effects, we grew the cultivars in a single sterilized background soil, inoculated with a small amount of
live soil from four sites from Texas to Missouri. Prior to soil collection at each site, the field plots were
previously grown with the same mixtures of switchgrass cultivars [4].

We hypothesized that most feedback would be negative given previous results of meta-analyses
on soil feedback to grasses [8,22], but we expected overall less negative feedback for the more vigorous
lowland compared to upland ecotypes. However, based on 3.5–7.9× regional yield variation of the
selected cultivars [4], we predicted that soil feedback would outweigh cultivar or ecotype variation as
non-microbial soil properties were held constant. We further expected to find an interaction of cultivar
and soil inoculum source created by regional home versus away effects. Finally, we also examined
root-associated fungi at harvest because these are often implicated in plant-soil feedback, with the
expected benefits from plant cultivation of mycorrhizal fungi, and reduced growth from a buildup of
fungal pathogens.

2. Materials and Methods

This study was conducted in a greenhouse at the USDA-ARS Grasslands, Soil and Water Research
Station in Temple, TX, USA. The greenhouse was maintained at 22.2 ◦C and automatic irrigation by
overhead spray was applied daily to prevent any drought stress throughout the experiment. Average
photosynthetically active radiation levels in the greenhouse were 61% of outside values. We used
1.9 L round, plastic, single-layer pots, which were adequate for determining responsiveness for these
young plants. To avoid nutrient differences created by different soils, we used a single background soil
comprised of a 1:1 v:v sterilized mixture of local Houston Black Clay soil and quartz sand. Soil and
sand were sterilized by autoclaving three times with 24 h rest in between. No fertilizer was applied to
the pots. While soil nutrient levels were not measured, plants showed no signs of nutrient deficiency.

To test potential for soil feedbacks, live soils were collected in May 2014 from four switchgrass
stands in Temple, TX, USA; Stillwater, OK, USA; Mt. Vernon, MO, USA; and Columbia, MO, USA,
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which had previously been conditioned by a mixture of switchgrass cultivars that were established in
2009 and were known to differ in soil properties (Table 1, [4]). At each site, soils were collected as a
grab sample of ~1 kg from each of four locations within the plots, to a depth of 15 cm. Soils were then
combined and homogenized by sieving to 2 mm. Sieved soils were used as inocula by mixing 10% of
the live soil into the background pot soil by volume (~190 mL). Live soils were added just prior to
seed addition in May 2014. Control pots were included with no live inoculum, but an equal volume of
sterile background soil. Pots were filled to 2.5 cm below the top and placed ~15 cm apart on the bench
to limit cross-contamination.

Table 1. Locations and characteristics of soils used for inocula.

Source Location Soil Series Soil Taxonomic Class Soil
Texture Latitude pH Organic

Matter %

Cation Exchange
Capacity (mEq
per 100 g Soil)

Temple, TX, USA Houston Udic Haplusterts black clay 31.04 7.9 2.38 45.9
Stillwater, OK, USA Kirkland Udertic Paleustolls silt loam 36.12 5.9 1.83 49.2

Mt. Vernon, MO, USA Gerald Aeric Fragiaqualfs silt loam 37.07 5.9 1.70 10.2
Columbia, MO, USA Mexico Vertic Epiaqualfs silt loam 38.89 6.3 1.67 16.3

To test how switchgrass plant-soil feedback varied across these regional soils, we focused on four
cultivars that also originated in the Great Plains. We selected two lowland ecotype cultivars, Alamo and
Kanlow, and two upland ecotype cultivars, Blackwell and Cave-In-Rock (Table 2). Compared to upland
ecotypes, lowland ecotypes are usually more productive with taller, thicker tillers and larger leaves,
more cellulose and lower nitrogen in dry matter, and delayed reproduction [23–26]. The specific
cultivars selected are also known to vary in both aboveground biomass production (Table 2) and other
traits, such as maximum leaf area index and water use efficiency [4]. Seeds of each cultivar were
overplanted and thinned to one plant per pot after seedling emergence. The full design included 5 soil
inocula (4 live and 1 control) × 4 cultivars × 5 replicates = 100 pots. All pots were randomly positioned
on benches in the greenhouse.

Table 2. Switchgrass cultivars data from Kiniry et al. (2013). Previous field yields are from the third
growing season.

Previous Field Yields (Mg ha−1 ± 1 SD)

Cultivar State of
Origin

Latitude
of Origin Ecotype Temple,

TX, USA
Stillwater,
OK, USA

Mt. Vernon,
MO, USA

Columbia,
MO, USA

Alamo Texas 28 Lowland 30.6 ± 26.5 15.0 ± 7.0 15.1 ± 7.0 20.9 ± 8.9
Kanlow Oklahoma 35 Lowland 13.8 ± 7.3 12.4 ± 0.9 21.2 ± 9.7 21.2 ± 7.0

Blackwell Oklahoma 37 Upland 4.8 ± 2.8 8.8 ± 3.6 11.6 ± 1.9 6.7 ± 1.4
Cave-In-Rock Illinois 38 Upland 4.8 ± 1.5 12.5 ± 3.6 14.8 ± 3.5 8.9 ± 1.3

Given that switchgrass is a perennial, we ran the experiment for two growing seasons based
on previous data showing that switchgrass plant-soil feedbacks strengthened in the second growing
season [27]. The above-ground biomass was removed from all pots at the end of the 2014 growing
season. Plant height and tiller number were measured every 4–5 weeks from April to July 2015.
In July 2015, plants were destructively harvested. Shoots were cut and dried to constant weight in a
forced air drying oven. Roots were washed free of soil, weighed fresh, and a subset of ~0.5 g fresh
roots < 2 mm in diameter of known weight was removed to assay for root colonization by fungi.
The remainder of each root sample was dried, together with the shoot samples, and used to determine
total root dry matter per plant. The samples for fungal colonization were stored in ethanol prior to
clearing in KOH and staining with acid fuchsin [28]. Septate hyphae, aseptate hyphae, arbuscules,
and vesicles were counted using the line-intercept method at 160×with 100 intersections per sample [29].
Septate hyphae were interpreted as non-mycorrhizal, while aseptate hyphae, arbuscules, and vesicles
were considered mycorrhizal structures.
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Plant-soil feedback was calculated on total plant biomass as ln (treatment/control) for symmetric
values around zero following Pernilla-Brinkmann et al. [30]. Plant biomass, feedback, and root
colonization by septate hyphae, aseptate hyphae, arbuscules, and vesicles were analyzed with
ANOVA as a function of cultivar, soil source, and their interactions, with both treatments as fixed
effects. Plant height was analyzed similarly, but using a repeated measures ANOVA to account for
multiple measurements over time and Greenhouse-Geisser corrections when sphericity was violated.
For significant effects, posthocs were performed with Ryan-Einot-Gabriel-Welsh F tests. Planned
contrasts were used to ask how biomass and feedback of each cultivar was compared between
home and away soil inocula sources, with home defined as the regional soil source nearest to the
cultivar origin (Tables 1 and 2). Biomass data were ln transformed and root colonization data were
arcsine-square root transformed for normality and homogeneity of variance. Transformed data are
presented as back-transformed values with asymmetric 95% confidence intervals. To correct for
multiple comparisons, we used a Bonferroni-corrected α = 0.006. All statistics were carried out in
SPSS v. 26 (IBM, Armonk, NY, USA).

3. Results

3.1. Growth over Time

Switchgrass cultivars differed in their overall growth forms (Table 3). Alamo was 140% taller,
but had up to 20% fewer tillers compared to the average of other cultivars. Blackwell was up to 21%
shorter than other cultivars, but had 130% more tillers on average. Kanlow and Cave-In-Rock were
consistently intermediate in both average height and tiller number. With the exception of Kanlow,
cultivars in control soils were generally of intermediate height, but had 124–200% more tillers than
in live-inoculated soils. However, tiller number depended on the interaction of cultivar and soil,
and no single soil inoculum source was consistently best. There was also variation in cultivar height
over time based on soil inoculum source (Table 3). For example, Alamo inoculated with soils from
Stillwater increased in height by only ~8 cm from April to July, whereas Alamo inoculated with soils
from Mt. Vernon or Columbia grew by ~60 cm during the same time period (Figure 1).

Table 3. Repeated measures ANOVAs for height and tillers as a function of cultivar (“Cultivar”),
soil inoculum source (“Soil”), and date of measurement (“Date”). Greenhouse-Geisser corrected
p values are reported for within-subjects effects (height, epsilon = 0.630; tillers, epsilon = 0.666).

Height Tillers
df MS F p MS F p

Between-subjects
Cultivar 3 10447.75 14.57 <0.001 3173.17 11.78 <0.001

Soil 4 3745.74 5.22 0.001 2596.87 9.64 <0.001
Cultivar × Soil 12 1331.51 1.86 0.055 994.60 3.69 <0.001

Error 71 717.01 269.27
Within-Subjects

Date 4 7805.84 107.36 <0.001 1205.94 30.20 <0.001
Date × Cultivar 12 178.01 2.45 0.029 86.47 2.17 0.032

Date × Soil 16 94.63 1.30 0.195 53.69 1.34 0.205
Date × Cultivar × Soil 48 187.94 2.59 <0.001 51.86 1.30 0.145

Error 71 72.71 39.93
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Figure 1. Height (left) and number of tillers (right) for switchgrass cultivars (A–H) and soil inoculum
sources (colors) across five dates from April to July 2015. Note the different scales for Alamo (A,B)
compared to all other ecotypes (C–H). Points are means ± SE (n = 4–5).

3.2. Biomass and Feedback at Harvest

More switchgrass biomass was in roots than in shoots (Figure 2), but there was no differences in
total plant biomass among switchgrass cultivars (Table 4). In contrast, feedback was 2×more negative
for the upland ecotypes, Blackwell and Cave-In-Rock, compared to the lowland ecotypes, Alamo and
Kanlow (Figure 2). Soil inoculum source affected total plant biomass (Table 4), with the largest plants
in control soils (Figure 2). Plants were also 1.55× larger when grown with soil inoculum from Temple
and Columbia compared to Stillwater and Mt. Vernon. Soil inoculum effects on feedback were parallel
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to biomass, with more negative feedback observed for the soil inocula that supported smaller plants
(Figure 2). There were no interactions of cultivar and soil inoculum source on either biomass or
feedback. Based on the planned comparisons, cultivars did not differ in biomass or feedback in home
vs. away soil inocula.Agronomy 2020, 10, x FOR PEER REVIEW 6 of 11 
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Figure 2. Total biomass (A,B) and biomass feedback (C,D) as a function of switchgrass cultivar (A,C) 
and soil inoculum source (B,D). Hatches show the portion of total biomass in roots. Bars are means 
±95% CI (biomass) or 1 SE (feedback) with n = 22–24 for cultivar and n = 17–20 for soil inoculum 
source. Letters indicate significant differences in posthoc comparisons. 
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Figure 2. Total biomass (A,B) and biomass feedback (C,D) as a function of switchgrass cultivar
(A,C) and soil inoculum source (B,D). Hatches show the portion of total biomass in roots. Bars are
means ±95% CI (biomass) or 1 SE (feedback) with n = 22–24 for cultivar and n = 17–20 for soil inoculum
source. Letters indicate significant differences in posthoc comparisons.

Table 4. ANOVAs for biomass and biomass feedback as a function of plant cultivar, soil inoculum
source, and their interaction.

Biomass Feedback

Treatment df MS F p df MS F p

Cultivar 3 0.244 1.594 0.198 3 1.760 11.417 <0.001
Soil 4 2.910 19.023 <0.001 3 1.271 8.246 <0.001

Cultivar × soil 12 0.265 1.729 0.078 9 0.234 1.515 0.163
Error 74 0.153 61 0.154

3.3. Root Colonization at Harvest

Root colonization rates were low overall, with an average of 13% aseptate hyphae, 4% septate
hyphae, 1% arbuscules, and 7% vesicles across all treatments. Switchgrass cultivars differed in fungal
root colonization (Table 5, Figure 3). Kanlow roots had the fewest fungal structures overall. Septate
and aseptate hyphae were 4–7 times more abundant in Alamo roots on average compared to other
cultivars. Arbuscules were overall 10 times more abundant in Alamo and Cave-In-Rock compared to
Blackwell and Kanlow, but this was largely due to the pattern in control soils. In soils with live inocula,
Alamo had the most arbuscules in soil inocula from Columbia and Cave-In-Rock had the fewest
arbuscules in soil inocula from Mt. Vernon compared to all other cultivars. There were no differences
in arbuscules among cultivars when inoculated with soils from Stillwater or Temple. Vesicles were
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10 times less abundant in Kanlow roots compared to all other cultivars. Soil inoculum source had no
effect on root colonization, except roots in control soils had fewer vesicles than those in inoculated soils.

Table 5. ANOVAs for fungal root colonization (septate hyphae, aseptate hyphae, arbuscules, vesicles)
as a function of plant cultivar, soil inoculum source, and their interaction.

Septate Hyphae Aseptate Hyphae Arbuscules Vesicles

df MS F p MS F p MS F p MS F p

Cultivar 3 0.198 14.327 <0.001 0.488 14.473 <0.001 0.050 12.508 <0.001 0.21 17.990 <0.001
Soil 4 0.048 3.486 0.012 0.110 3.253 0.016 0.001 0.319 0.864 0.17 14.531 <0.001

Cultivar
× Soil 12 0.028 2.020 0.034 0.053 1.570 0.119 0.013 3.142 0.001 0.029 2.497 0.008

Error 74 0.014 0.034 0.004 0.012
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Figure 3. Root colonization by septate hyphae (A,B), aseptate hyphae (C,D), arbuscules (E,F), and 
vesicles (G,H) as a function of switchgrass cultivar (left) and soil inoculum source (right). Bars are 
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posthoc comparisons. 
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Figure 3. Root colonization by septate hyphae (A,B), aseptate hyphae (C,D), arbuscules (E,F),
and vesicles (G,H) as a function of switchgrass cultivar (left) and soil inoculum source (right). Bars are
means ±95% CI (cultivar n = 22–24; soil source n = 17–20). Letters indicate significant differences in
posthoc comparisons.
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4. Discussion

As expected, plant-soil feedback was generally negative, with a lower biomass in all soils treated
with live inocula from field-grown switchgrass stands compared to control soils. Feedback was less
negative for lowland compared to upland ecotypes, but this was not reflected in switchgrass biomass.
Instead, both feedback and biomass largely tracked the soil treatments. In addition, height and tiller
growth depended on the interaction of cultivar and soil inoculum source. These results suggest that
regional variation, previously observed in switchgrass production across sites, is partly driven by
interactions with local soil microbial communities.

The large role of soil inocula is consistent with a role of microorganisms separate from nutrients
and other soil properties. In previous work, Kiniry et al. [4] showed large cultivar by site interactions
on switchgrass yield. Here, Temple and Columbia soils ameliorated negative soil feedback compared
to Mt. Vernon and Stillwater for all cultivars, which is only consistent with observed Alamo yields in
the field [4]. However, in exploring the observed non-significant trend (P = 0.078) for the interaction
of cultivar by soil inoculum, lowland ecotypes appear to have smaller yield reductions in live soils,
particularly Temple and Columbia soils, compared to upland ecotypes. Cultivar effects may also have
been limited by growing plants in greenhouse pots, which can constrain plant size. For example,
the observed decrease in tiller number was likely due to tiller competition and self-thinning in the pots.
Additional field studies are needed to better understand the potential regional variation in cultivar
responses to local soil microbial communities.

The dependence of switchgrass growth form on cultivar and soil inoculum source during the
growing season was observed for both plant height and tiller number. Unlike final biomass, control
soils were not always the most beneficial for growth. Height depended on the interaction of cultivar
and soil inoculum source across time, reflecting different height growth trajectories. Tiller number
also depended on the interaction of cultivar and soil, but ranks were not the same as for height.
A substantial literature has focused on trait spectra for switchgrass cultivars as a function of abiotic
conditions [1,31–34], but cultivar-specific trait lability generated by the biotic component of soils may
require us to revisit theories of their underlying drivers.

Given the extent of home vs. away effects in the ecological literature, the lack here was surprising.
It is possible that we were working at the wrong scale by using regional matches, rather than those
from the specific site of origin. Alternatively, it may be that the cultivated nature of switchgrass has
divorced this species from the evolutionary processes that lead to the development of local adaptation.
This is supported by the lack of relationships between switchgrass climate responses and their
climate origins [34], despite extensive latitudinal and longitudinal adaptation [2,3]. The identification
of mechanisms of plant-microbial interactions are needed to determine the drivers of switchgrass
soil feedback.

The overall reduction in biomass observed with live soil suggests that microbes are at least
consuming plant carbon, but likely also reflects the presence of pathogens. In studies where beneficial
and pathogenic microorganisms are separately manipulated, they have opposing effects on the outcome
of plant-soil feedback [35]. Other aspects of the microbial community that may also be important, such
as composition or diversity [36], were not measured here. However, fungal root colonization did not
follow patterns of plant-soil feedback or plant biomass and root colonization rates were similar between
control and treated soils, suggesting limited fungal influence. Overall root colonization by fungi
was low, <35% for mycorrhizal hyphae and <14% for non-mycorrhizal hyphae, compared to 69–100%
colonization of switchgrass roots in the field [37]. Low fungal abundance may have been caused by soil
sieving removing root fragments from the soils used as inocula. As a result, bacteria and viruses may
have been more important in this experiment. Switchgrass cultivars, including the four studied here,
do vary in both bacteria and fungi that accumulate in their soils [38]. More detailed manipulations
are needed to identify the components of these communities that alter plant-soil interactions. Finally,
it would be interesting to investigate the generality of these responses in field conditions with less
limited rooting environments.
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5. Conclusions

The predominant role of soil microbial origin, rather than cultivar, on switchgrass growth suggests
that planning for future production may benefit from consideration of soil microbial properties,
much like annual cropping systems where management is focused on disease suppression. Plant-soil
feedback appears to be consistent at the ecotype level, and not associated with cultivars per se, although
additional cultivars should be tested to understand the generality of this observation. Finally, the lack
of regional matching between cultivar and soil source, i.e., the lack of home versus away effects,
suggests that local adaptation to microbial communities is not a driver of growth or feedback.
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